焚烧炉系列
焚烧炉内衬耐火材料侵蚀结灰鼓包解决方案
焚烧炉是将有机混合废气通过引风机的作用直接送入废气焚烧炉,有机混合废气首先进入换热器进行预热,然后进入炉膛,在燃烧机的火焰高温作用下(680-760℃),使混合气体分解成二氧化碳和水,由于燃烧是放热过程,所以燃烧后的气体温度比较高(一般在760℃左右),使之进入换热器与低温气体(有机混合废气)进行热交换,使进入的混合废气温度提高或达到反应温度,如果达不到反应温度,加热系统就可以通过自控系统实现补偿加热,使它完全燃烧,这样既节省能源,又能使混合废气有效去除。
当焚烧的垃圾为不同组成的非均匀性混合物时,其类型、数量和热值方面也有很大不同。为此内衬的物理和化学性能应适应操作期间不同阶段的要求。垃圾焚烧炉的工作温度一般不超过1200℃,但复杂的工作环境(如气体的侵蚀、垃圾在高温移动过程中对炉体内部的磨损和冲击)要求优质耐火材料内衬,而且需求量也将不断增加。
焚烧炉燃烧室,由于温度高达1000℃以上,废弃物的投入必然引起温度的变化,因而要求耐火材料不仅耐磨、耐蚀、难附着,而且还要抗碱、抗氧化性。炉排的下部侧墙还受到垃圾磨损、熔渣附着等作用。
因此,一般炉排炉炉墙损毁集中在前后拱区耐火材料以及二、三段炉排侧墙耐火砖等,尤其是带空冷结构的炉墙容易出现凸起“鼓包”现象,严重时甚至倒塌。通过本文对这几个关键部位的损毁进行分析,并提供相关对策,仅供参考。
前后拱区耐火材料侵蚀结灰
前、后拱区由于温度较高,直接接触高温烟气及飞灰,导致耐火材料侵蚀损毁严重,灰渣附着严重,甚至脱落。图1为苏州某公司西格斯500t焚烧炉1年后照片,根据残衬分析结果可知,灰渣与本体材料反应明显,大量低融物的生成与侵蚀是导致后拱区钢板烧红而被迫停炉的主要原因。
目前用于前后拱区耐火内衬材料大多是具有耐火、耐磨、抗热震性好以及抗冲刷性强等的刚玉莫来石或莫来石系氧化物材料,在焚烧炉气氛中,氧化物材容易与垃圾飞灰等反应,并侵蚀渗透,产生灰渣附着现象,因此焚烧炉内衬运行过程中需要停炉清灰。与氧化物材料相比而碳化硅等非氧化物材料,不仅具有耐火性好、硬度高以及抗热震性好等特点,而且碳化硅材料不易润湿且耐腐蚀性好,因此,具有良好的抗灰渣侵蚀及附着性,很大程度上解决了垃圾飞灰附着的问题。开发的刚玉-碳化硅、碳化硅质材料指标如表1所示,广泛应用于第一通道和焚烧炉斜顶部位,如图2、3所示,使用效果良好。
对抗灰渣侵蚀实验后试样的显微结构进行分析,图4结果表明,不含碳化硅的氧化物材料灰渣与本体材料反应界面不清晰,侵蚀渗透严重,而含碳化硅材料与灰渣反应界面清晰,灰渣很难侵蚀本体材料,不易附着;而且随着碳化硅含量增高,界面约越明显,材料抗灰渣侵蚀性越好。
空冷式炉墙“鼓包”
希格斯炉排或者马丁炉排在二、三及四段炉排侧墙部位均采用空冷式炉墙,一般设有60mm空气夹层,工作层耐火砖是114mm(希格斯)和176mm(卡万塔)耐火砖。这种结构炉墙在使用过程中,由于垃圾湿度或者热值波动导致炉内温差波动而引起的热应力,以及反复停、起炉操作造成的结构应力双重作用下,容易导致高温段炉墙因应力集中而“鼓包”,严重时出现脱落或倒塌现象。
前、后拱部位由于温度较高,受烟气和垃圾灰的侵蚀、渗透及冲刷严重,采用含碳化硅材料能大大提高炉衬的抗灰渣侵蚀渗透以及灰渣抗附着性。另外,可以采用增加锚固砖设计提高单元结构的拉固力,能一定程度上缓解炉墙“鼓包”问题。另外,提高拉钩砖的强度、拉钩砖的金属件制作和安装质量以及炉墙砌筑水平等,也在很大程度上改善侧墙的结构稳定性。
更多焚烧炉详情请关注新乡双诚环保设备网。
热门资讯
MORE >